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A (d,c,v)-graph is a c-connected graph of diameter = d in which each node is

9.f valence = v. The minimum order (number of nodes) of such graphs is denoted by

~~d,c,v), and a minimum (d ,c,v)-graph is one of minimum order. Each minimum (d,c,v)-

graph corresponds to an efficient way df arranging the stations of a communication
network so that if any c - 1 stations are incapacita ted , the rest of the network

is still connected , and so that in case of lweakdown or other difficu lty , each station

can rely for assistance on precisely v others. The present paper classifies and

counts the minimum (d,1 ,3)—graphs and the minimum (d,2,3)-graphs , a task performed

elsewhere for the minimum (d 3,3)-graphs.
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Classification and Enumeration of Minimurn (’l , 1, 3)—Graphs

and Minimum (d, 2, 3)—Graphs

VICTOR KLEE AND HOWARD QUAIFE

University of Washington , Seattle , Was hington

Boeing Airplane Company , Seattle , Was hington

A (d,c ,v)-grapp is a c—connected graph of diameter = d

in which each node is of valence = v. The r~In imum order (num ber

of nodes) of such graphs is denoted by ij(d ,c ,v), an d a

minimum (d,c,v)—~ raph is one of minimum or der .  Eac h minimum

(d,c,v)—graph corresponds to an efficient way of arranging the

stat ions of a commun icat ion networ k so that  if ~ny c — 1

stat ions are inca pac itated, the rest of the network is still

connected , and so that in case of breakdown or other difficulty,

each station can rely for assistance on precisely v others

(see [2]).

The (d ,c ,v)—graphs and the function ~i(ci ,c ,v) are defined by

replacing = with � in the above definitions. The functions

~i(d ,c,v) and ~i(d ,c ,v) are determined in [2] arid [3] respectively .

The present paper classifies and counts the minimum (d,l,3)-graphs

and the minimum (d,2,3)—graphs , a task performed in [1] for the

minimum (d,3,3)-graphs.
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THE CASE d � 1 4

The following can be established by a routine but tedious

division into cases. Details are left to the reader.

PROPOSITION For 1 � d ~ 14 the minimum (d, 1, 3)-graphs and

the minimum (d, 2, 3)—graphs are precisely those shown below.

(F igure 1 is to be inserted here )

Min imum (d,1,3)— graphs and minimum (d,2,3)-graphs for d � 14

It is assumed henceforth that d � 5, exc ept where a

different inequality is explicitly stated .
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DIAM OND STRINGS AND MF~IIMUM (d , 1, 3)-GRAPHS

A clasp and a diamon d are the graphs shown below , where each

pendant edge is later to be comb ined with ano ther such edge in

forming an ordinary undirected graph .

(F igure 2 is to be inserted here )

Clas p Diamond

The diamond string D(k) with k diamond s is formed by combining

two clasps and k diamonds in the manner shown below .

(Figure 3 is to be inserted here )

D ( O )  D ( l )

(Fi gure 14 is to be inserted here )

clasp k diamonds clasp

The diamond string D(k) with k diamonds

An enlarged clasp Is one of the two gra phs

(Figure 5 is to be inserted here)

Enlarged clasps

and a doub ly enlarged clasp Is one of the thre~ graphs

..d -
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(F igure 6 is to he inserted here)

Doubly enlarged clasps

An enlarged diamon d is one of the two gra phs

(Figure 7 is to be inserted here)

Enlarged diamonds

and a doubly enlarged diamond is one of’ the two graphs

(Figure 8 is to be Inserted here )

Doubly enlarged diamonds

THEOREM For Integers 5 
~ 
j � 7 and k ~ 0, ~i(J + 3k,l,3) = 2j + 14k.

The unique minimum (5 + 3k, 1, 3)—graph_Is the diamond string

D(k) with k diamond s. The minimum (6 + 3k , 1, 3)—graphs are

t he graphs f orme d from D ( k) by en1argIn~ one clas_p or one diamond;

their number is 2 + k for even k and 3 + k for odd k. The

minimum (7 + 3k , 1, 3)—g_raphs .are the graphs formed from D(k)

by doubly enlarging one clasp, enlarging both ciasp,~~ enlarging one

clasp and one diamond, enlarging two diamonds, or doubly enlarging

one diamond; their number is 6 + 5k.+ [3k 2/2].

Proof. Plainly

(1) p(d,c ,v) ~ ~4i,c ,v), with strict inequality when both d

and ~i (d ,c ,v) are odd ,

because odd—valent graphs are of’ even order. That

-~
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(2) u(j + 3k, 1, 3) � 2j + 14k

follows from (1) and the fact [2] [14 ] that u~d ,1,3) = 14 + d + [d/3].

It is easily verified that D(k) and the graphs derived from it

have the indicated diameters and orders . Since they are plainly

connected and 3—valent , equality holds in (2). It remains to

show that for d � 5 there are no other minimum (d,l,3)—graphs

and, having done that , to just i f y the formu las for t he num ber of

such graphs .

With 5 � j � 7, k � 0, and d = j + 3k, let G b e a

minimum (d,l,3)— graph , let P (x0,x1,. . . ,x~ ) be a path of length

d joining the two nodes x0 and Xd of a diametral pair, and

let v and w [resp. y and z] be the other two nodes of G

adjacent to x0 [re sp . xd]. Let

V {v ,w,x0,x1,x2}, X = {x~~: 3 � I � d — 3}, Z = {x d 2 , xd l , xd,y,z }

and let T [resp. Q] be the set of all nodes of G that have

not yet been name d and have 3 [resp. < 3] neighbors in X. Let

m = IQuT I = p (d,l,3) — (d + 5) j + k — 5

and e = lx i  = j + 3k — 5 .

Note that each node of X is &ncident to a unique edge that is not

on the path P, and since P is a shortest ra~ h from x0 to Xd

the edge In question always has its other end In QuT. From

the shortness of P it follows also that

(3) ih — 1
~ 

� 2 whenever Xh and have a common neighbor , and

(14) the neighbors of’ a node in T are three ‘onsecutive nodes in X.

If j = 5 then in = k and e — 3k , whence Q is empty and

it follows from (14 ) that G has the spanning subgraph shown in

the next figure . But then plainly G is D(k).
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(Figure 9 is to be insert’~d here)

Spanning subgraph of minimum (5+3Ic ,l,~~)—graph

We st ill must cons ider the two cases:

(5) j = 6, m = 1 + 1<, e 1 + 3k;

(6) j = 7, m = 2 + k, e 2 + 2k.

Def ine t he m u l t i p lic ity  of a node of Q as the number of edges

joining it to X, and note that the total number of edges joining

Q to X Is

13 1Q 1  
— 2 when (5) holds .

( 7)  e - 3 1T 1 e - 3(m - I~ I~ 
=

~~~

— 14 when ( 6 )  holds.

No te also the fol lowing consequences of P ’s ~~ortness:

(8) no edge joins V to Z;

(9) if a node of G has a neighbor in V and also a neighbor

In Z then i = j = 6, k = 0, and the neighbors are and

x~ respec tively .

Now suppose (5) holds , whence by (7) the sequence of

multiplicities of the members of’ Q is (1) or (2,2 ) .  In

t he f irst instanc e Q cons ists of a single no de q , q has a

single ne ighbor in X , and q ’s other two neic~hbors belong to

VuZ. From (14) In conjunction with P’s c~~ortness it follows that

q ’s neighbor in X is x 3 or X d 3 .  We rri~l~i ~issume It is the

former , whence G has the spanning subgraph shown in the next

figure.
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(Figure 10 is to be inserted hero )

Spanning subgraph of minimum ( 6+ 3k , l , 3 ) — i ~raph when Q = (q}

It is readily verified that x1 and have no common neighbor ,

and since v and w are interchangeable we mri .v assume one of the

following holds: x1 is adjacent to v and x2 to q; x1 is

adjacent to q and x2 to w; x1 is adjicent to v and x2

to w. The first case yields the first of the enlarged clasps

described earlier , and the other two cases both yield the second

of the enlarged clasps.

Now suppose ( 5 )  holds and Q ’ s sequence of multiplicit ies is

(2,2). If a node u of VuZ is adjacent to 0 it follows frorri

(3) In conjunction with P’s shortness that l~ is x 2 or

Xd 2 ~ 
which is quickly seen to be impossible . Hence the two

nodes of Q are neighbors , whence, cal1inr~ a i m  on (3) and

on P ’ s shortness , we see that for some 1. w1~~h 3 s I < ~ + ~ 
~ 3 + 3k ,G

has one of the two subgraphs shown in the nex t figure .

(FIgure 11 is to be inserted hero)

Possible subgraphs of’ minimum (6+3k ,1,~~ —~ iin h when IQ I = 2

It follows with the old of (6) that I i~ i ru~1tiple of’ 3 and

hence the above suhgraphs correspond to th e sit iation in which G

Is obtained from a diamond chain by enlarrinr ~me diamond .

It was proved in the eceding two parai~raphs that the minimum

(6+3k,l,3)—graphs are as claimed . Their nurnb ’~r’ Is also as claimed ,
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for there are ( fo r  a given k ~ ~) two diff~~r ’-~nt isomorphism

types having an enlarged clasp and 21k/21 types having an

enlarged diamond , where Ik/21 is the smaUr~ t - integer � k/2.

Only the case j = 7 remains.

If j = 7 — that is, If (6) holds —— Q’ s sequence of

multipileities is limited by (7) to the follovi~ng possihilIties:

(2,0), (1,1), (2,2,1), (2 ,2,2,2).

The analysis of these possibilities is similar to (though more

complicated than ) the analysis provided above f’rr the case

j = 6. Details are omitted , but the concl~n~1cn Is that the mini-

mum (7+3k ,i,3)—graphs are as claimed In the theorem . To see

that their number is as claimed, note that , in view of the numbers

of the various types of enlargements and the as ymm etr y of one of

the doubly enlarged diamonds, the number of rnin~mum (7+3k ,i,3)—

graphs having

a dou b ly enlarged clasp Is 3;

two enlarged clasps is 3;

an enlarged clasp and an enlai r~ d diamond is L~k ;

a doub ly enlarged 3iamond is [ k / H • + • k ;

two enlarged diamonds of different types is

t~ o enlarged diamonds of the ~ ime ty pe is 2s , where
2 2

k even ~~ s = (k—i) + ( 1-: --3) + •. .  + 1 — [s— ]
and k odd ~~ s = (k—i) + (k-3) ~ + 2 = 

k 2-1 . ~k 2
~

Hence the total num ber Is

6 + ~-k + ~k
2 + Ik/2 1 + 2[k2/2J = 6 + ~k + [3k 2/2] .
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DEM ON LADDER S AND MINI M UM ( d , 2, 3)- GRAPHS
.4

For each positive integer k, a k — l a d  ie~’ I~’ formed from two

n o d e — d i s j o i n t  s imple paths  (u 1,. . . , u k ) a n t  ( v 1,. . . , v b ) by

adding,  k a d d i t i o n a l  edges ( t he  rungs )  which  ? ‘iitch the u , ‘ S

wi th  the  v j ’ s in such a way tha t  I i  — jj < ] whenever  u~
is matched with vj~ and also adding pend ’rnt ed~ es at Ul,uk,vl

and ‘1krn (When k = 1 there are two pendan~ e 1 - e o  at U 1 and

two at v1.) For example , each 3—ladder irr lorm rphic to one of

the following .

(Figure 12 is to be inserted hei”-i- )

The two 3-ladders

A small end, a large end, and a forked end ao~ ~ iown below , each

having two pendant edges. Note that each lar~~ ~nd contains a

small end.

(F igure  13 is td  be inser ted  herc ’
~

Crnali end Large end ?orked end

A der on ladder  w i t h  k rungs in formed by ~ ln ’~~ng a k—ladicr

between two small ends in the manner shown h e l en  for  k = 2.

Note t ha t  a demon ladder may have a large ~~iìti h~ t t  is not required

to.

-- ___________-—
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(Figure  114 is to be inserted here)

Demon ladder with two r Jn r ~

As follows from the theorem below , the minh~n (5,2,3)—graphs

are precisely the above two demon ladders i~~d the two graphs shown

below .

(Figure 15 is to be inserted h e r e )

Other minimum (5,2,3)—graph :-

THEOREM For all d , ~(d,2,3) = 2d + 2. For d ~ 14 the minimum

(d,2,3)—graphs are the demon_ladders with d - 3 rungs and the

graphs obtained from such demon ladders 
~
y repinoing a large end

with a forked end or two large ends with fcr~ cd ends. For

d � 5 the number of’ minimum (d,2,3)-graphsl;

~f(d - 1) + 11~2d 
- (1)d

where f(k) li t-he kth Fibonacci number.

Proof. It 13 e . ;il y verified that the drrnen ladders and

their derivatives are (d,2,3)— graphs , whence

(10) u (d,2,3) S 2d + 2.

Now suppose that a 0 is minimum (d,2,~~)—orntTh with d � 14 ,

let {x.y} be a diametral pair of nodes , and lrt P = (x ,p1,p 2,. ..,y)

and Q = (x,q1,q2,. ..,y) be a pair of’ Indeprnd ’nt paths from

x to y such t hat , among all such pairs , the sum of the lengths

of’ P and Q is a minimum . Plainly x [re:’p. y] has a neighbor

Id - - - - - - - -~~~~~------ 
_______________________________________
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~~ w [ resp .  z]  not in PuQ. Since each of ~ ~n f  Q has at

least d — 1 intermedIate nodes , and slnc° a ~ z , It follow:;

wi th  the aid of (10)  that  u ( d , 2 , 3)  = 2d + 2 , r and Q are

both of length d , and w and z are the only nodes of’ 0

not In P u Q .  Thus 0 has the spanning su l ra ph shown lii the

next f igure and it rema in s only to cons ider th~ poss ibi l i t ies

for the remaining edges.

(Figure 16 is to be inserted here )

Spanning subgraph of minimum (d , 2 ,3 ) - gr a p h

Plainly w ’ s two neighbors  other than  x belong to

{p 1,p 2 ,q 1,q 2 }. If w is adjacent  to both  p 1 and p 2 [re sp .

and q 2 ] then all poss ib i l i t i es  for t h e  t h i r d  neighbor of

q1[r’esp. p 1] lead to cont radic t ions  and hon ’~ w ’s se t of

neighb ors is ~x ,p1,q1), 
{x ,p1,q 2}, 1x ,p2,i1} or {x ,p2,q2

}.

In the first of these cases , w belongs to a m all  end , and

to a large end if’ {p2,q2} is an edge . The loo t three cases

imply respectively the adjacency of p2 to of p., to

and of’ p1 to q1, and hence lead to forked ends in the

mann er shown bel ow.

(Figure 17 is to be inserted herr )

Three ways of obta in ing a for ked m d

Similar considerations apply to z’s neighbor ’ . Since the

shortness of P and Q implies Ii — j i < 1 whenever p1 or
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q 1 is ad j acen t  to Pj  or q~~, it Is now nle r that the

minimum (d ,2,3)—graphs are prect..ely as de s-rlL ”r l in the oeorem.

It remains only to count the number of isc-”inr’ ri: ’ srn types of’ su ch

graphs .

Let 1 (k) denote  the number of order ~ i : -a i ’ t it i o n s  of’ k

into l’ s and 2’s — that is , the number of requerices

(a 1,.. .,ab ) such that a1 c Cl ,2} for all I and a1 
= k.

To see that  1(k)  is the kth Fibonacci  n i l  t e r , note that

1(1) = 1, 1(2 )  = 2, and

(11) 1( k )  = f(k — 1) + f’(k — 2 )

because f(k—l) [resp. f(k—2)] is the numbor cf sequences

(a 1, . . .  ,ab ) of l’ s and 2’s such that = k and

a1 = 1 [resp. a1 
= 2]. Let s(k) denote the number of

partitions , among those counted by 1(k), that are symmetr’li

(equal to their  own reverses)  and note that

(12) when k is odd , s(k) = f(k ~ l.~.

(13) When k is even s(k) = f(~~) + f-~~~ — 1 ) = f (~ + 1).

For each ordered partition a = (a1,... ,ah ) of k into

l’ s and 2 ’ s , let La denote the  k~ ladder ’ formed from two

node—disjoint simple paths by dividing the noic~: into b

blocks — the first block consisting of the rirot a1 u1 ’s

together wIth the first a1 v1
t s, the second t iock consisting of’

the next a2 ui ’s together with the next rj
2 

V 1 ‘s, etc. — and

then adding edges (In addition to the four pen I rnt edges) according

$ to the following rules:

If ~u1,v1} is a block it is also an edge ;

If Cu i,u j÷1,vi,v1+1 } is a block then ( 1 I 1 , v
1~~1

) and

Cu 1~ 1,v1} are edges.
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An example is shown below .

(Figure  18 is to be in s e rt e l  h e r e )

The 8—ladder L,
~1,2,2,l ,2

Note tha t

(1)4) two k—ladders La and L~ are isomorpl-uio if and only if

the sequen ces a and a are equal or one Is th e rever se of the

other.

With the aid of (1l)—(i)4) we can count the number of

i somorphism types of minimum (d , 2 ,3 )— g r a p h s .  Let r = d — 3.

Then it Is not hard to verify that there are

s (r )  + ~-( f( r )  — s ( r ) )  = ~- s (r )  
~
- 

~f(r)

types of minimum (d,2,3)-graphs with two small ends ,

f(r — 1)

types  wi th  one small end and one forked end , and

— 2) + ~-f(r — 2)

types with two forked ends. Hence the tot i number of’ types is

the sum of

t = ~.s(r) + ~-s ( r — 2)

and

~(f(r)+f(r—1)) + ~(f(r—l) + f(r—2)) = ~- f ( r + 1 ) + ~-f ( r )  = ~f(r+2) =

When r Is even it follows from ( 12)  that

2t = f (~-+1) + ~~~~~ + 1) = f (~-+2) = f ( a;!) = ___________

and when r’ is odd it follows from (13) thit

2t = f(~~.L) + f(~~
1) = f(r+l ) = f’( a~a) = f (

2 d _ l _ ( _ l ) 3) 

-~~~~~~~~~ -.-..
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